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Abstract. Photan-photon and photon-phonon anticorrelation effects in Raman scattering 
are studied theoretically. The Heisenberg equations of motion describing Raman scattering 
are solved in the short-time approximation. The laser, Stokes, anti-Stokes and phonon 
modes are quantised. The joint normally ordered characteristic functions are evaluated for 
modes exhibiting anticorrelation effects. The problem of existence of a Glauber-Sudarshan 
quasi-distribution function related to anticorrelation effects is considered. The magnitude 
of the anticorrelation effects depends on the initial statistical properties of the photon and 
phonon modes. 

1. Introduction 

It has been known for some time (Shen 1967, Walls 1973, Simaan 1975) that the 
statistical properties of Stokes and anti-Stokes fields depend strongly on the initial 
statistical nature of the photons and phonons. The purpose of this paper is to consider 
anticorrelation effects in Raman scattering by phonons from a quantum statistical point 
of view, and to answer the question of whether and how the anticorrelation effects 
depend on the initial statistical properties of the photons and phonons. 

Anticorrelation effects can occur in individual modes as well as between different 
modes. In the first case, the variance of the number of photons is less than the average 
number of photons (or equivalently, the variance of intensity is negative) and the 
photo-counting distribution becomes narrower than the corresponding Poisson dis- 
tribution for a coherent state (Peiina 1972). In the anticorrelation effect occurring 
between two different modes, the covariance function for the number of photons is 
negative. Anticorrelation effects have been studied for parametric amplification pro- 
cesses (Stoler 1974, MiSta and Peiina 1977), second-harmonic generation 
(Kozierowski and TanaS 1977, Kielich et 1978, Pefinovd and Peiina 1978, Mostowski 
and Rzpiewski 1978, Drummond er a1 1979), two-photon absorption (Simaan and 
Loudon 1975, Bandilla and Ritze 1976, Chatarvedi er a1 1977) and two-photon 
stimulated emission (Yuen 1976). With regard to resonance fluorescence, the predic- 
tion of photon antibunching was made by Carmichael and Walls (1976), and photon 
anticorrelation was detected experimentally by Kimble et al (1977). In the present 
paper we consider the possible existence of anticorrelation effects in stimulated and 
spontaneous Raman scattering between the incident laser and scattered field (Stokes 
and anti-Stokes radiation) and between photons and phonons. In our investigation, we 
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apply the model Hamiltonian for Raman scattering suggested by Mollow and Glauber 
(1967) and extended to the trilinear case by Walls (1970). The Heisenberg equations of 
motion describing the dynamics of the Raman scattering are solved in the short-time 
approximation. In our treatment all fields-laser, Stokes, anti-Stokes and phonon- 
are quantized. The molecular vibrations are described by chaotic phonons. The 
incident laser fieid is coherent. We consider the Stokes and anti-Stokes fields as being 
initially coherent, or chaotic. Using the solution of the Heisenberg equations of motion 
we evaluate the quantum normally ordered characteristic functions. With the help of 
these functions, we calculate the variances of intensity and covariance functions for the 
photons and phonons. We consider the existence problem of normally ordered 
quasi-distribution functions. 

2. Hamiltonian formulation of Raman scattering by phonons 

The single act of Raman scattering by phonons may be described as follows. A laser 
photon with frequency wl incident on a Raman active medium is annihilated, and a 
phonon with frequency wp and a Stokes photon with frequency w s  = w I  -up are created. 
Alternatively, an incident laser photon together with a phonon may be annihilated and 
create an anti-Stokes photon with the frequency oa = w1 +up. Therefore, the model 
Hamiltonian describing the above Raman scattering has the form (Walls 1970, 1973, 
von Forester and Glauber 1971) 

fi = Ei, + f i s  + fi, 
H o  = hw1a^)+d1+ hw,a^p+a ,̂ + hwsa^;a^s + hw,a^:a ,̂ 

(2.1) 

(2.2) 

A +  where WI, $ 7 ,  61; ws, a*', 2s; U,, a,, a^, and up, Lipf, 2, denote the frequencies and the 
creation and annihilation operators for laser, Stokes, anti-Stokes and phonon modes 
respectively. The Stokes coupling constant X s  and anti-Stokes coupling constant X, 
contain the phase integrals 

and 

exp[-i(kl + k, - k,) . r ]  d3r 

respectively, where kj are the wavevectors of the modes. The dynamics of the system 
described by the model Hamiltonian (2.1) are given by the following equations of 
motion in the Heisenberg picture: 
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Denoting the number operators a*: (t)a*l(t), a*: (t)&(t) ,  a*: (t)a*,(t) and d,'(t)a*,(t) by 
n*,(t), f is( t ) ,  & ( f )  and fi,(t) respectively, we may verify that the conservation laws for the 
number operators are given by 

(d/dt)(n^i(t) + &(t)  + n*,(t)) = 0 

(d/dt)(n*,(t)+n*,(t)-n*s(t)) = O .  

(2.9) 
(2.10) 

Thus we find that & ( t )  + &(t) + n*,(t) and n*,(t) + n*,(t) - &(t)  are constants of motion in 
the Raman effect and are simultaneously satisfied for any time. The Heisenberg 
equations of motion (2.5)-(2.8) are coupled nonlinear equations. In order to solve 
them, we had recourse to the short-time technique described and applied by Agrawal 
and Mehta (1974) and Gambini (1977) to study the dynamics of parametric processes 
with a trilinear Hamiltonian. Using the short-time technique we can write an approxi- 
mate solution (up to second order in t )  of the Heisenberg equations (2.5H2.8) in the 
form 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

3. Time variation of the quantum characteristic functions 

In order to describe the statistical properties of nonlinear interaction between photons 
and phonons in Raman scattering, we use joint normally ordered characteristic 
functions. The joint normally ordered characteristic function for two different modes i 
and j is defined by the relation (Mehta and Sudarshan 1965, Mehta 1967, Glauber 
1966, Peiina 1972) 

CN(Pi, pi, t)(i+j,=Tr[p^(O) exp(p&(t) +pja*T(f)) exp(-pTa*i(t)-PTa*j(t))I 

( i ,  i = 1, S ,  a, P) (3.1) 
where 

P^(o) = J" ~ t t t s ,  t a ,  t p ,  o)/tI, t s ,  t a ,  t p ) ( t l ,  6s- t a ,  t p ~  dzh d2ts d2ta d2tp (3.2) 

is the total density operator of the system in the Glauber-Sudarshan representation at 
the initial time t = 0. The 6 = exp(i&) are the eigenvalues of the photon and phonon 
annihilation operators, 4j denoting the initial phases of the modes. The joint normally 
ordered characteristic function for two modes contains all statistical information about 
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the interaction between them. With the joint characteristic function available, we can 
easily determine the correlation between the number of bosons by means of photon- 
photon covariance functions and photon-phonon covariance functions 

(A Wi A W,) E (a*: (t)a*i(t)a*f (t)a*j(t)) - (a*: ( t )a* i  (t))(a*f (t)a*j(t)) 

The covariance functions (3.3) may be positive, negative or zero. In the first case we 
have a correlation, whereas in  the second we have an anticorrelation between bosons in 
two different modes. In the third case the bosons are not correlated. Putting P i  = 0 or 
Pi = 0 in equation (3.1) we obtain the characteristic functions for individual modes. 
With the help of these functions, the average numbers of photons and phonons and 
variances of intensity and higher-order moments for individual modes can be cal- 
culated. The boson variance of intensity is given by 

where 

(3.4) 

(3.5) 

is the average number of bosons. When the variance of intensity is negative, we have 
the so-called antibunching of bosons (Per'ina 1972), i.e. anticorrelation between 
photons or phonons in individual modes. Positive variance of intensity is evidence of 
correlation between bosons (bunching of bosons). If the value of the variance of 
intensity is zero, the bosons in a mode will be uncorrelated. Anticorrelation between 
modes i and j is associated with the non-existence of a joint normally ordered 
quasi-distribution function QN(&, e;, t ) ,  which is defined by the inverse Fourier trans- 
form of the joint characteristic function (3.1) 

ad[:, ti, t )  = (1/r2) I CN(P,, P,, t )  exp(-PIS:* -PI&* + P ? 5 :  + P : P : )  d2Pl d2P,. (3.6) 

The non-existence of the function aN(&, i$, t )  does not exclude the existence of 
quasi-distribution functions a"(,$, t )  and ON(&, t )  separately for the modes i and j 
unless antibunching of bosons occurs in these modes. 

4. Anticorrelation effect between laser and Stokes modes 

In this Section we consider anticorrelation between the laser and Stokes photons. The 
joint normally ordered characteristic function for the incident laser mode and Stokes 
mode can be written using equation (3.1) in the form 

(4.1) CdPI, P s ,  t )  = Tr[6(O) exp(Pla*l' ( t )  +Psa*s' ( t ) )  exp(-pi+ddt) -Ps*a^s(t))I. 
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We evaluate the characteristic function (4.1) in the case when the initial states of the 
laser, Stokes and anti-Stokes modes are coherent states but the phonon mode is chaotic, 
i.e. when the initial total density operator of the system has the form 

b(0) = ( l /rnp) exp(-1t,12/np)ltt, t s ,  t a ,  tp>(tt, t s ,  t a ,  tpt d2tp. (4.2) 

The average number of phonons at the time t = O  is denoted by n,. Inserting the 
solutions (2.11) and (2.12) of the Heisenberg equation of motion into equation (4,1), 
performing normal ordering with the help of the Baker-Hausdorff identity up to t 2  and 
taking the trace, we obtain 

CdpI, Os, t )  = exp[PIt1* ( t )  +P& ( t )  -P: t I ( t )  -Ps*ts(t )  - IPt12Bl(t) 

(4.3) 1 *z -IPs12Bs(d + (ZPI + P I * P D I S ( t )  +PIPs*as( t )  +cc)l, 
where 

t d t )  = [h -tlXs12t2t~(Its12+n,+ 1)+21Xa12t2tl(lta12-np)~ exp(-iwlt) (4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

The above characteristic function contains all statistical information about interaction 
between the laser and Stokes modes in spontaneous and stimulated Raman scattering. 
If only the spontaneous Raman effect takes place, then 8s = t a  = 0 (the Stokes and 
anti-Stokes modes are in vacuum state at the time t = 0). With the help of equations 
(3.4) and (4.3) we find the variances of intensity for the laser and Stokes radiation. We 
have 

((Awl2> =B?( t )  +2Bi(t)Itt(t)I2+ (G(t)t:2(t)+CC) 
2 2  2 

= ~I~s12~Zl t t121t s12np+~1~~ l  t td /taI2(n,+ 1)  

-t2(2n,+ 1)(XsXatF2tsta+Cc) (4.11) 

((AWA2> = Bz 0) + 2&(t)1ts(t)12 = 21X~12t21t~121t~12(np+ 1). (4.12) 

Similarly, using equations (3.3) and (4.3), we find the covariance function for the laser 
and Stokes photons: 

(A W A Ws) = IDis(t)12 + IDts(t)12 + (&(t)51* ( t ) tX ( t )  -%(t)tdt)tX ( t )  + CC) 

= - I ~ s I ~ t ~ l t i l ~ l t s I ~ ~ 2 n , +  1) + t2(np+ 1)(XsXatf2tsta+CC). (4.13) 

In spontaneous Raman scattering, the variances of intensity (4.1 l), (4.12) and covari- 
ance function (4.13) are zero up to t 2 .  In the stimulated Raman effect, there occurs 
bunching of laser and Stokes photons. From equation (4.13) we see that the covariance 
function for the laser and Stokes photons depends on the phases 41, 4 s  and (ba of the 
initial laser, Stokes and anti-Stokes modes respectively. On assuming the phase 
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matching 

and the following relation for the phases A 4  = 241 - 4s - 4a = r, we obtain the maximal 
anticorrelation between the laser and Stokes photons 

( A  WI A Ws) = -%'it215~12/5~/2(2np + 1) - ~ ~ S ~ ~ ~ ~ / ~ I ~ ~ I S S I I ~ ~ I ~ ~ +  1). (4.14) 

For Aks,a = 0 and A 4  = ~ / 2 ,  we have 

Aks,a kl F k, - ks,, = 0 

(A W, A WS) = -Xgt2/5,j2/5s12(2np+ 1). (4.15) 

From equation (4.13) we see that anticorrelation between thc laser and Stokes photons 
does not depend on the phases 41, 4s and q5a when anti-Stokes radiation is in the 
vacuum state at the time t = 0 (only stimulated Stokes emission takes place). One easily 
notes that, even at np = 0, bunching of laser and Stokes photons and anticorrelation 
between them exist as a result of phonon vacuum fluctuations: 

((Awl)') = 2 1 % ' a / 2 t 2 / 5 ~ / 2 1 5 ~ 1 2 - f 2 ( % ' ~ % ' a 5 : 2 5 ~ 5 a + ~ ~ )  (4.16) 

((A Wd2) = 2 I X s  t t 2  I I 1 & 1 (4.17) 

(A WI AWs) = -/%lZt2/612ks/2 + t2(%s%'a5?'5s5a + cc). (4.18) 

One can prove that, when the initial state of the system is a coherent state in all four 
modes the covariance function for the laser and Stokes modes is equivalent to the above 
function (coherent phonon mode describing acoustical wave Brillouin scattering). 
Therefore the magnitude of the anticorrelation between the laser and Stokes photons 
depends on the initial statistics of the phonons. When anticorrelation between the laser 
and Stokes photons occurs the joint normally ordered quasi-distribution function 
QN(.f{, &, t )  for the laser and Stokes modes does not exist, but quasi-distribution 
functions QN(&, t )  and QN(& t )  exist separately for the laser and Stokes modes. Let us 
examine these functions. Putting PI = 0 in equation (4.3) we obtain 

cN(PS, t )  = exp(PstX(t) - P X S ~ ( ~ )  - lPs12Bs(t)). (4.19) 

The quasi-distribution function for the Stokes mode obtained by using the inverse 
Fourier transform of the function (4.19) is given by a Gaussian function: 

(4.20) 

where the variance Bs(t)  = /%'s12t2~~112(np+ 1) describes the noise present in the Stokes 
field from spontaneous Raman scattering. Therefore, the above quasi-distribution 
exhibits a superposition of noise on the coherent amplification of the stimulated Raman 
effect. Similarly, we obtain the quasi-distribution function for the laser field neglecting 
for simplicity the rotational terms Cl(t)  and C? ( t )  

(4.21) 

where the variance B,(t) is given by equation (4.7). 
Therefore, the initially coherent laser radiation does not remain coherent for t > 0. 

As seen from equations (4.20) and (4.21), these are functions well known from 
nonlinear optics (Walls 1973, Agrawal and Mehta 1974, Peiina 1972, Peiinovi and 
Pefina 1978). The joint normally ordered characteristic function for spontaneous 
Raman scattering (tS = 5. = 0) has the form: 

(4.22) 

Q&, t )  = ( 1 / r ~ s ( f ) )  exp(- I& - t i . ( t ) I 2 / ~ s ( t ) )  

@N('!i, t )  = (l/rBl(t)) exp(-15{ - '$(t)/2/Bl(t)) 

cN(PI, ~ s ,  t )  = exp (~157 ( t )  - ~ ? h ( t )  - / W ~ s ( t ) )  
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(4.26) 

(4.27) 

It may be noted that in spontaneous Raman scattering the laser and Stokes modes are 
uncoupled up to t2 .  The quasi-distribution function for the laser field (4.26) is given by a 
two-dimensional Dirac delta function, meaning that the initially coherent laser mode 
remains coherent for t > 0. The Stokes mode is described by the Gaussian function 
(4.27) centred at zero with the variance Bs(t) = l%'s12t21(i12(np+ 1) describing noise from 
spontaneous Raman scattering. 

In order to study how anticorrelation between the laser and Stokes photons depends 
on the statistical properties of the initial Stokes and anti-Stokes states, we evaluate the 
characteristic function (4.1) when the laser field is coherent but the Stokes, anti-Stokes 
and phonon modes are chaotic before the interaction, i.e. when 
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The above expressions lead to the following results: (i) the value of the covariance 
function (4.37) is negative (in practice, the average number of the laser photons is more 
than the average number of the phonons at the time t = 0, i.e. 1611~ > np (Wang 1969)); 
(ii) the bunching of Stokes photons is higher for an initially chaotic than for a coherent 
Stokes field (relations (4.12) and (4.36) respectively); (iii) the bunching of laser photons 
and the anticorrelation between the laser and Stokes photons do not depend on the 
initial phases of the photon modes; (iv) the anticorrelation effect (4.37) and the 
bunching of photons (4.35) and (4.36) take place even at np = 0, but do not exist in the 
absence of stimulated Raman scattering; (v) no joint normally ordered quasi-dis- 
tribution function ON((:, tk ,  t )  exists for the laser and Stokes modes in the presence of a 
stimulated Raman effect; (vi) normally ordered quasi-distribution functions ON([/, t )  
and QN(& t)  exist separately for the laser and Stokes modes in the presence of 
stimulated Raman scattering and are given by equation (4.21) with 1ts12=ns and 
1taI2 = na and 

(4.38) 

respectively. The variance Bs(r) of the Gaussian function (4.38) is given by the average 
number of Stokes photons (4.32) and describes the degree of chaos in the Stokes mode 
from spontaneous and stimulated Raman scattering. Therefore, the initially chaotic 
Stokes mode remains chaotic for t > 0. 

t )  = ( l / rBs( t ) )  exp( - /tkI2/Bsit)) 

5. Anticorrelation effect between the laser and anti-Stokes modes 
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The above relation shows that bunching of anti-Stokes photons occurs in stimulated 
Raman scattering. The covariance function for the laser and anti-Stokes field is given 
by 

(AW A Wa) IDla(t)12 + IDIa(t)12 + (Dla(t15f (t)5a* ( t )  -61a(t)51a(t)51(t)S? ( t )  + CC) 

= - 1Xa12t215i121ra12(2np+ 1) + t2np(XsXar:' 2esra+ C C ) .  (5.10) 

Assuming phase matching Aks,.=O and putting A 4  =T we obtain the maximal 
anticorrelation between the laser and anti-Stokes photons 

(Awl AWa) = - XZt215~121&12(2np+ 1 ) - 2 ~ ~ ~ a ~ ~ I h I ~ I 5 s s l l Z . l n , .  (5.11) 

For Aks,. = 0 and A 4  = ~ / 2  we have 

(AWI AWa) = -&t216I215aI2(2np+ 1). (5.12) 

One may note that the phase-dependent terms in equation (5.10) equal zero when 
stimulated anti-Stokes radiation takes place only. If initially np = 0, the relations (5.9) 
and (5.10) become 

((A Wa)' = 0 (5.13) 

(Awl AWa) = -IXa12t21511215a12. (5.14) 

It can be proved that the covariance function (5.14) is equivalent to the covariance 
function for the laser and anti-Stokes fields when all modes are in coherent states at the 
time = 0. From equation (5.13) we see that the anti-Stokes field tends to be coherent 
during the interaction. No identical effect occurs for the Stokes mode (see equation 
(4.12)). 

The existence of anticorrelation between the laser and anti-Stokes photons excludes 
the existence of a joint normally ordered quasi-distribution function aN(6;, 5:, t )  for the 
laser and anti-Stokes modes. The quasi-distribution function for the laser mode is given 
by equation (4.21), whereas that for the anti-Stokes mode is given by 

@ N G  t )  (l/TBa(t)) exp(- 16: -Sa(t)12/Ba(t))- (5.15) 

This is a Gaussian function centred at fa(t) with variance given by (5.6). If np = 0, the 
function (5.15) tends to the Dirac delta function 

(5.16) 

Therefore, when np = 0 the anti-Stokes mode remains coherent at t > 0. In spon- 
taneous Raman scattering the laser and anti-Stokes modes, likewise to the laser and 
Stokes modes, are uncoupled; therefore 

@N('$;, 6:t) @N('$;, f)@N(S:, t )  (5.17) 

(2) I 
@N(& t )  = 8 ((a - &a(t)). 

where @"(e{, t )  and ON(.& t )  are given by equation (4.26) and 

* N ( t L  t )  = (l/TBa(t)) exp(-I&,12/Ba(t)) (5.18) 

respectively. The variance of the function (5.18) is given by (5.6) and describes the 
noise from spontaneous Raman scattering. We see from equation (5.18) that the 
anti-Stokes mode is in the vacuum state when np = 0. 

If, in the initial state, the laser mode is coherent but the phonon, Stokes and 
anti-Stokes modes are chaotic, i.e. when the total density operator at the time t = 0 is 
given by equation (4.28), the joint normally ordered characteristic function for the laser 



1930 P Szlachetka, S Kielich, J Peiina and V Peiinova' 

and anti-Stokes field is given by 

where 

ti(t) = [ti - iI%J2t2t1(ns + np + 1) + iI%a12t2t1(na - np)l exp(-iwlt) 

Bdt) = l%s12t2nsnp+ 1%a/2t2na(np+ 1) 

B a ( t )  = na + Ixa12t215112(np- na) - I%a12t2na(np + 1) 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

The variance of intensity for the anti-Stokes radiation is determined by the following 
relation with accuracy up to t 2 :  

(5.25) 

1 1  
Glaa( t )  = -I%a12t251na(np-Ina+q) 

Bla( t )=I%al  t na(np+1). 2 2  2 

((A Wa)2) = B: (t)  = (2,' (t)a*a(t))2. 

The covariance function (A Wl A Wa) has the form 

(5.26) 

The function (5.26) is negative when ltIl2 > np > na which, in practice, takes place. 
Therefore we have 

(5.27) (A W1 A Wa) < 0. 

If np = 0 the function (5.26) is positive and we have the correlation effect 

(Awl AWa)= l%a12r2[nt +na1~1~2(na-1)]>0. (5.28) 

One may note that for the laser and Stokes photons, if n,, = 0 anticorrelation occurs. In 
the presence of the anticorrelation effect (5.27) the joint normally ordered quasi- 
distribution function aN(6;, &, t)  for the laser and anti-Stokes modes does not exist. 
The function a N ( ( 1 ,  t )  is given by equation (4.21) with 1 & 1 2  = ns and leal2 = n,. 

The quasi-distribution function for the anti-Stokes mode is of the form 

wG, t )  = (1/rBa(t)) exp(- 15: 12/Ba(t)) (5.29) 

where the variance Ba(t) is given by equation (5.22) and describes the noise from the 
spontaneous and stimulated Raman effect. From equation (5.29) we see that the 
initially chaotic anti-Stokes mode remains chaotic for t > 0. 

6. Photon-phonon anticorrelation effect 

The existence of anticorrelation between incident and scattered photons obviously 
poses the question of the existence of anticorrelation between photons and phonons. In 
what follows, we shall consider the possibility of such anticorrelating. For clarity, the 
photon-phonon normally ordered characteristic functions will be given only for those 
modes between which anticorrelation occurs. It can be shown that no anticorrelation 
exists between Stokes photons and phonons. If the initial total density operator of the 
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system is given by equation (4.2), the covariance function between the Stokes photons 
and phonons is positive: 

(AWs AWJ = I%12t2[n;(It~12- Its12) + Its12np(21ti12- 1) 

(6.1) 2 * *  +Itl12(21ts12 + 2np+ 1)1+ t 2 ( n p  + 1)(xs%atl t s t a  +cc>. 
Therefore, in this case, correlation between photons and phonons is obvious. 

((AWp)2> = n; + 21zs12t2CnE (Iti12- Its12) + Iti12np(15s12 + 1) 

The phonon variance of intensity is given by 

2 2  2 +2IzaI [np(Ita12-ItI12>+ Ita12np(Iti12+ 1)1 

+ 2 t 2 n p ( z s ~ a t i  t s t a  +cc>. (6.2) 2 * *  

meaning that a bunching of phonons takes place. In the second case, when the initial 
total density operator of the system is given by equation (4.28), the covariance function 
between the Stokes photons and phonons is positive as well, namely 

(6.4) 
To conclude, no photon-phonon anticorrelation occurs between the Stokes photons 
and phonons in spontaneous and stimulated Raman scattering. One can prove that no 
anticorrelation occurs between anti-Stokes photons and phonons in spontaneous or 
stimulated Raman scattering. 

We shall now show that anticorrelation between the incident laser photons and 
phonons occurs in spontaneous Raman scattering. The joint normally ordered quasi- 
distribution function for the laser and phonon mode, when the initial total density 
operator has the form (4.28), is given by 

c N ( P I ,  Pp,  t )  

= exp(P1tf ( t )  -Pftdt) - IPd2Bdt) - IPp12Bpb) -P11P,12G$p(f) 

+ P f  IPP12GlPP(t) + IPI121PP12~lP(t)) (6.5) 
where 

ti(t) = [ti-iIzs12t2ti(ns+np + 1)+~1za12t2t,(na-np)I exp(-iwt) 

Bl(t) = l%s12t2nsnp+ I~~I’ t~n , (n ,+  1) 

Bp(t) = (6; ( t )dP(r)> 

(6.6) 

(6.7) 

= np+I~~12t21ti12(np+ I )+ I~s12t2ns(Itl12-np) 

+ l~a12t2nA1tf + np + 1) - 191P,12t21tl/2np (6.8) 

-Iza12t2tlna(np + 111 exp(-iolt) (6.9) 
Blp(t) = Izs12t2n;ns+ Iza12t2(np+ 112na. (6.10) 

GIPp(f) = [-3(Izs12+ Iza12)t2tlnp(np+ 1) - Izs12t2tinsnp 



1932 P Szlachetka, S Kielich, J Peiina and V Peiinova 

The covariance function for the incident photons and phonons in spontaneous Raman 
( n s  = n,  = 0) has the form 

(6.11) 

Hence, anticorrelation between the laser photons and phonons is obvious. The 
existence of an anticorrelation effect (6.11) excludes the existence of a function 
QN(tf, tb, t ) .  The quasi-distribution function for the phonon mode is given by the 
Gaussian function 

(6.12) 

with the variance B J f )  = n,+ lXs/2t21~l~z(np+ 1) - l,Xa12tzl&lzn,. From equation (6.12) 
we see that the initially chaotic phonon mode is chaotic for t > 0. If initially the phonon 
mode is in vacuum state, it remains so. 

Finally, it should be noted that the complete characteristic function 
CN(pI, ps, pa, pP, t )  can be calculated using the above method. The results, however, 
are rather complex. 

~ t b ,  t )  = (1/ .n~,( t ) )  exp(- 1tPl2/B,(t)) 

7. Conclusion 

A fully quantum mechanical treatment of anticorrelation effects in Raman scattering by 
phonons is given using the quantum characteristic function technique. Anticorrelation 
effects are intrinsically quantum mechanical and are not contained in classical theory. 
Anticorrelations between incident laser photons and scattered photons occur in 
stimulated Raman scattering only. In spontaneous Raman scattering the incident and 
scattered photons are not correlated. Anticorrelation between scattered photons and 
phonons occurs neither in spontaneous nor stimulated Raman scattering. Photon- 
phonon anticorrelation takes place between incident photons and phonons in spon- 
taneous Raman scattering. 
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